Acute effects of pulsed microwaves and 3-nitropropionic acid on neuronal ultrastructure in the rat caudate-putamen
There is now a new paper out, in Bioelectromagnetics, with the title "Acute effects of pulsed microwaves and 3-nitropropionic acid on neuronal ultrastructure in the rat caudate-putamen", Bioelectromagnetics 2005; 26:82-101 by Seaman RL & Phelix CF.
Please, read the abstract:
Ultrastructure of the medium sized "spiny" neuron in rat dorsal-lateral caudate-putamen was assessed after administration of 3-nitropropionic acid (3-NP) and exposure to pulsed microwaves. Sprague-Dawley male rats were given two daily intraperitoneal doses of 0 or 10 mg/kg 3-NP and 1.5 h after each dose were exposed to microwave radiation at a whole body averaged specific absorption rate (SAR) of 0 (sham exposure), 0.6, or 6 W/kg for 30 min. Microwave exposure consisted of 1.25 GHz radiation delivered as 5.9 micros pulses with repetition frequency 10 Hz. Tissue samples taken 2-3 h after the second sham or microwave exposure showed no injury with light microscope methods. Blinded qualitative assessment of ultrastructure of randomly selected neurons from the same samples did reveal differences.
Subsequent detailed, quantitative measurements showed that, when followed by sham exposure, administration of 3-NP significantly increased endoplasmic reticulum (ER) intracisternal width, ER area density, and nuclear envelope thickness. Microwave exposure at 6 W/kg alone also significantly increased these measures. Exposure of 3-NP treated animals at 6 W/kg significantly increased effects of 3-NP on ultrastructure. Although exposure at 0.6 W/kg alone did not affect ultrastructure measures, exposure of 3-NP treated animals at 0.6 W/kg reduced the effects of 3-NP. We concluded that 3-NP changed neuronal ultrastructure and that the microwave exposures used here changed neuronal ultrastructure in ways that depended on microwave SAR and neuron metabolic status. The apparent cancellation of 3-NP induced changes by exposure to pulsed microwaves at 0.6 W/kg indicated the possibility that such exposure can protect against the effects of mitochondrial toxins on the nervous system.
(Olle Johansson, assoc. prof.
The Experimental Dermatology Unit
Department of Neuroscience
Karolinska Institute
171 77 Stockholm
Sweden)
Please, read the abstract:
Ultrastructure of the medium sized "spiny" neuron in rat dorsal-lateral caudate-putamen was assessed after administration of 3-nitropropionic acid (3-NP) and exposure to pulsed microwaves. Sprague-Dawley male rats were given two daily intraperitoneal doses of 0 or 10 mg/kg 3-NP and 1.5 h after each dose were exposed to microwave radiation at a whole body averaged specific absorption rate (SAR) of 0 (sham exposure), 0.6, or 6 W/kg for 30 min. Microwave exposure consisted of 1.25 GHz radiation delivered as 5.9 micros pulses with repetition frequency 10 Hz. Tissue samples taken 2-3 h after the second sham or microwave exposure showed no injury with light microscope methods. Blinded qualitative assessment of ultrastructure of randomly selected neurons from the same samples did reveal differences.
Subsequent detailed, quantitative measurements showed that, when followed by sham exposure, administration of 3-NP significantly increased endoplasmic reticulum (ER) intracisternal width, ER area density, and nuclear envelope thickness. Microwave exposure at 6 W/kg alone also significantly increased these measures. Exposure of 3-NP treated animals at 6 W/kg significantly increased effects of 3-NP on ultrastructure. Although exposure at 0.6 W/kg alone did not affect ultrastructure measures, exposure of 3-NP treated animals at 0.6 W/kg reduced the effects of 3-NP. We concluded that 3-NP changed neuronal ultrastructure and that the microwave exposures used here changed neuronal ultrastructure in ways that depended on microwave SAR and neuron metabolic status. The apparent cancellation of 3-NP induced changes by exposure to pulsed microwaves at 0.6 W/kg indicated the possibility that such exposure can protect against the effects of mitochondrial toxins on the nervous system.
(Olle Johansson, assoc. prof.
The Experimental Dermatology Unit
Department of Neuroscience
Karolinska Institute
171 77 Stockholm
Sweden)
Starmail - 25. Feb, 16:56