Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head
Electromagn Biol Med. 2006;25(4):349-60.
* de Salles AA,
* Bulla G,
* Rodriguez CE.
Electrical Engineering Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brasil.
The Specific Absorption Rate (SAR) produced by mobile phones in the head of adults and children is simulated using an algorithm based on the Finite Difference Time Domain (FDTD) method. Realistic models of the child and adult head are used. The electromagnetic parameters are fitted to these models. Comparison also are made with the SAR calculated in the children model when using adult human electromagnetic parameters values. Microstrip (or patch) antennas and quarter wavelength monopole antennas are used in the simulations. The frequencies used to feed the antennas are 1850 MHz and 850 MHz. The SAR results are compared with the available international recommendations. It is shown that under similar conditions, the 1g-SAR calculated for children is higher than that for the adults. When using the 10-year old child model, SAR values higher than 60% than those for adults are obtained.
PMID: 17178592 [PubMed - in process]
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17178592&query_hl=2&itool=pubmed_docsum
* de Salles AA,
* Bulla G,
* Rodriguez CE.
Electrical Engineering Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brasil.
The Specific Absorption Rate (SAR) produced by mobile phones in the head of adults and children is simulated using an algorithm based on the Finite Difference Time Domain (FDTD) method. Realistic models of the child and adult head are used. The electromagnetic parameters are fitted to these models. Comparison also are made with the SAR calculated in the children model when using adult human electromagnetic parameters values. Microstrip (or patch) antennas and quarter wavelength monopole antennas are used in the simulations. The frequencies used to feed the antennas are 1850 MHz and 850 MHz. The SAR results are compared with the available international recommendations. It is shown that under similar conditions, the 1g-SAR calculated for children is higher than that for the adults. When using the 10-year old child model, SAR values higher than 60% than those for adults are obtained.
PMID: 17178592 [PubMed - in process]
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17178592&query_hl=2&itool=pubmed_docsum
Starmail - 7. Jan, 23:05