Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L.
Mutat Res. 2008 Nov 5. [Epub ahead of print]
Tkalec M, Malarić K, Pavlica M, Pevalek-Kozlina B, Vidaković-Cifrek Z.
Department of Botany, Division of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia.
The effects of exposure to radiofrequency electromagnetic fields (RF-EMFs) on seed germination, primary root growth as well as mitotic activity and mitotic aberrations in root meristematic cells were examined in Allium cepa L. cv. Srebrnjak Majski. Seeds were exposed for 2h to EMFs of 400 and 900MHz at field strengths of 10, 23, 41 and 120Vm(-1). The effect of longer exposure time (4h) and field modulation was investigated at 23Vm(-1) as well. Germination rate and root length did not change significantly after exposure to radiofrequency fields under any of the treatment conditions. At 900MHz, exposures to EMFs of higher field strengths (41 and 120Vm(-1)) or to modulated fields showed a significant increase of the mitotic index compared with corresponding controls, while the percentage of mitotic abnormalities increased after all exposure treatments. On the other hand, at 400MHz the mitotic index increased only after exposure to modulated EMF. At this frequency, compared with the control higher numbers of mitotic abnormalities were found after exposure to modulated EMF as well as after exposure to EMFs of higher strengths (41 and 120Vm(-1)). The types of aberration induced by the EMFs of both frequencies were quite similar, mainly consisting of lagging chromosomes, vagrants, disturbed anaphases and chromosome stickiness. Our results show that non-thermal exposure to the radio-frequency fields investigated here can induce mitotic aberrations in root meristematic cells of A. cepa. The observed effects were markedly dependent on the field frequencies applied as well as on field strength and modulation. Our findings also indicate that mitotic effects of RF-EMF could be due to impairment of the mitotic spindle.
PMID: 19028599 [PubMed - as supplied by publisher]
http://www.ncbi.nlm.nih.gov/pubmed/19028599?dopt=Abstract
Tkalec M, Malarić K, Pavlica M, Pevalek-Kozlina B, Vidaković-Cifrek Z.
Department of Botany, Division of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia.
The effects of exposure to radiofrequency electromagnetic fields (RF-EMFs) on seed germination, primary root growth as well as mitotic activity and mitotic aberrations in root meristematic cells were examined in Allium cepa L. cv. Srebrnjak Majski. Seeds were exposed for 2h to EMFs of 400 and 900MHz at field strengths of 10, 23, 41 and 120Vm(-1). The effect of longer exposure time (4h) and field modulation was investigated at 23Vm(-1) as well. Germination rate and root length did not change significantly after exposure to radiofrequency fields under any of the treatment conditions. At 900MHz, exposures to EMFs of higher field strengths (41 and 120Vm(-1)) or to modulated fields showed a significant increase of the mitotic index compared with corresponding controls, while the percentage of mitotic abnormalities increased after all exposure treatments. On the other hand, at 400MHz the mitotic index increased only after exposure to modulated EMF. At this frequency, compared with the control higher numbers of mitotic abnormalities were found after exposure to modulated EMF as well as after exposure to EMFs of higher strengths (41 and 120Vm(-1)). The types of aberration induced by the EMFs of both frequencies were quite similar, mainly consisting of lagging chromosomes, vagrants, disturbed anaphases and chromosome stickiness. Our results show that non-thermal exposure to the radio-frequency fields investigated here can induce mitotic aberrations in root meristematic cells of A. cepa. The observed effects were markedly dependent on the field frequencies applied as well as on field strength and modulation. Our findings also indicate that mitotic effects of RF-EMF could be due to impairment of the mitotic spindle.
PMID: 19028599 [PubMed - as supplied by publisher]
http://www.ncbi.nlm.nih.gov/pubmed/19028599?dopt=Abstract
Starmail - 30. Nov, 13:36